
TITLE OF THE PROJECT

SMART HOME AUTOMATION SYSTEM USING IOT

NAME OF CANDIDATE

WILLIAM CHAGOMA NGWIRA

REGISTRATION NUMBER

18321055006

GUIDE

 MS. FANNY CHATOLA

Project Report

Submitted

In partial fulfillment of the requirements for the degree of

BACHELOR OF ENGINEERING IN COMPUTER SCIENCE

June, 2025

DMI ST JOHN THE BAPTIST UNIVERSITY

LILONGWE, MALAWI

I

CERTIFICATE OF THE GUIDE

This is to certify that the project work entitled: SMART HOME AUTOMATION SYSTEM USING

IOT is a Bonafide work of MR. WILLIAM CHAGOMA NGWIRA Registration No: 18321055006

in partial fulfillment for the award of the Degree of BACHELOR OF ENGINEERING IN

COMPUTER SCIENCE, DMI - ST JOHN THE BAPTIST UNIVERSITY under my guidance.

This Thesis work is original and not submitted earlier for the award of any degree elsewhere.

Signature of the Student Signature of the Guide

DECLARATION BY THE CANDIDATE

I WILLIAM CHAGOMA NGWIRA hereby declare that this project report SMART HOME

AUTOMATION SYSTEM USING WOT submitted to DMI ST JOHN THE BAPTIST

UNIVERSITY in the partial fulfillment of requirements for the award of the degree of BACHELOR

OF ENGINEERING IN COMPUTER SCIENCE is a record of the original work done by me under

the supervision of MS.FANNY CHATOLA.

Enrolment No. :

Register No : 18321055006

Date : 19 JUNE 2025

Signature :

FreeText
II

PROFORMA FOR APPROVAL OF PROJECT PROPOSAL

Proposed Project Team: William Chagoma Ngwira

S.No. Reg. No. Name of the students Semester Branch

1 18321055006 WILLIAM CHAGOMANGWIRA X B.E

Title of the Project: SMART HOME AUTOMATION

SYSTEM USING IOT

Subject Area: WEB OF THINGS/INTERNET OF

THINGS

Name of the Guide: MS. FANNY CHATOLA

Designation: Lecturer –II

Address with Phone No.: DMI SJBU, +265 99 10 15 730

Office: DMI – SJBU

Residence: LILONGWE, AREA 22

No. of projects & students currently working under the Guide: 45

Signature of the Student Signature of the Guide

Date......................... with seal

N.B.: Please do not forget to enclose the synopsis of the project and the Bio-data of the Guide. In

case the complete and signed Bio-Data of the Guide is not enclosed, the proposal will not be

entertained

For Office Use only:

SYNOPSIS APPROVED NOT APPROVED

 GUIDE APPROVED NOT APPROVED

Comments / Suggestions for reformulation of the Project.

Date...................... SIGNATURE OF THE HOD

FreeText
III

BIO-DATA OF THE PROPOSED GUIDE FOR PROJECT WORK

1. PERSONAL INFORMATION

Name

Date of Birth & Age

Sex

: MS FANNY CHATOLA

: 13.12.1997:

: FEMALE

Academic Qualification : MSC, BSC

Official Address

Phone No. and Fax.

: P.O.BOX 2398.

: +265 991 01 57 30

 Residential Address : AREA 22

 e-mail id : fionachatola@gmail.com

2. DETAILS OF EMPLOYMENT

Designation : LECTURER II

Field of Specialization : COMPUTER SCIENCE

Teaching Experience (in years) : 4

Industrial Experience (in years) : 4 Particulars of contribution / experience in the

field of specialization:

No. of Projects guided : 45

I MS FANNY CHATOLA do hereby accept to guide WILLIAM CHAGOMA

NGWIRA student of the BACHELOR OF ENGINEERING IN COMPUTER

SCIENCE program of the DMI - ST JOHN THE BAPTIST UNIVERSITY.

Signature of the Students Signature of the Guide with Seal

FreeText
IV

DMI-ST. JOHN THE BAPTIST UNIVERSITY

LILONGWE, MALAWI

BONAFIDE CERTIFICATE

Register No: 18321055006

Certified that this is Bonafide record of work done in SMART HOME AUTOMATION SYSTEM

USING WOT by Mr. WILLIAM CHAGOMA NGWIRA of the BACHELOR OF

ENGINEERING IN COMPUTER SCIENCE at DMI ST JOHN THE BAPTIST UNIVERSITY

During the 2024/2025 academic year

INTERNAL EXAMINER EXTERNAL EXAMINER

FreeText
V

FreeText

ACKNOWLEDGEMENT

From the depths of my heart and every fiber of my being, I offer my deepest and sincerest gratitude to

the ALMIGHTY for His divine presence, infinite grace, and countless blessings, which have sustained

and guided me throughout every step of this journey. Without His favor, the successful completion of

this project would not have been possible. I remain profoundly indebted to our beloved Founder and

Chancellor, Rev. Fr. Dr. J.E. Arul Raj, for his visionary leadership and for providing the enabling

environment and all necessary facilities through our esteemed institution. My heartfelt thanks also

extend to Dr. T. X. A. Ananthi, President of the University Council, and Dr. Ignatius A. Herman,

Director of Education, DMI Group of Institutions Malawi, for offering me this golden opportunity to

undertake and complete this project with excellence. I am equally grateful to Professor Ambrose, our

respected Vice Chancellor, Rev. Sr. Pradeeba, Management Representative, and Ms. Agnes Msonda,

Vice Principal Academic, for their continuous encouragement, wise counsel, and support, which

motivated me to stay committed and focused. I extend special appreciation to my project guide, Ms.

Fanny Chatola, for her patience, mentorship, and insightful feedback that shaped the quality and

direction of this work. I also thank all the dedicated faculty and staff members of my department for

their assistance and moral support during this academic endeavor. Finally, I express my heartfelt

appreciation to my entire family, whose unwavering love, encouragement, sacrifices, and prayers have

been my foundation of strength, inspiration, and determination throughout this journey. This

achievement is not mine alone—it belongs to all who stood by me and believed in me.

FreeText
VI

LIST OF FIGURES

NUMBER DESCRIPTION PAGE

Figure 3.2.1 System architecture 11

Figure 3.3.1 Use case diagram 12

Figure 3.4.1 Data flow diagram 13

Figure 3.5.1 Class Diagram 15

Figure 3.6.1 Input Design 16

Figure 3.7.1 Output Design 17

Figure 4.3.1 Agile Lifecycle 22

Figure 6.2.1.1 Authentication Log in 31

Figure 6.2.2.1 Home Screen 32

Figure 6.2.3.1 Schedule Screen 34

Figure 6.2.4.1 Settings Screen 37

FreeText
VII

LIST OF TABLES

NUMBER DESCRIPTION PAGE

Table 5.1 Test Plan 18

FreeText
VIII

LIST OF ACRONYMS

ACRONYMS DEFINITION

IOT Internet Of Things

WOT Web of Things

MQTT Mosquitto

STT Speech to Text

FreeText
IX

TABLE OF CONTENTS

TITLE OF THE PROJECT ………………………………………………………………………… I

SMART HOME AUTOMATION SYSTEM……………………………………………………….. I

CERTIFICATION OF THE GUIDE………………………………………………………………. II

DECLARATION BY THE CANDIDATE….……………………………………………………. III

PROFORMA FOR APPROVAL OF PROJECT PROPOSAL……………………………….. ... IV

BIO-DATA OF THE PROPOSED GUIDE FOR PROJECT WORK…………………………... V

 1. PERSONAL INFORMATION…………………………………………………………….V

 2. DETAILS OF EMPLOYMENT…………………………………………………………...V

ACKNOWLEDGMENT…………………………………………………………………………...VII

ABSTRACT………………………………………………………………………………………. XIV

CHAPTER I …………………………………………………………………………………………. ………1

INTRODUCTION…………………………………………………………………………………………….1

1.1 BACKGROUND OF STUDY………………………………………………………………… 1

1.2 OBJECTIVES…………………………………………………………………………………. 2

1.3 SYSTEM DESCRIPTION .. 2

1.4 LITERATURE REVIEW ... 2

1.3.1 Summary Review .. 4

CHAPTER II ... 5

SYSTEM ANALYSIS………………………………………………………………………….......... . 5

 2.1 INTRODUCTION……………………………………………………………………………... 5

2.2 PROBLEM DEFINITION ... 5

2.3 EXISTING SYSTEM .. 6

2.4 FEASIBILITY STUDY... 6

2.4.1 Executive Summary .. 6

2.4.2 Finding And Recommendations .. 7

2.5 PROPOSED SYSTEM .. 7

2.6 SYSTEM OBJECTIVE .. 8

2.6.1 Energy-efficiency .. 8

2.6.2 Remotely Access .. 8

FreeText
X

2.6.3 Easy user interface .. 9

2.7 SYSTEM SPECIFICATION .. 9

2.7.1 Software Requirements .. 9

2.7.2 Hardware Requirements .. 10

CHAPTER III…………………………………………………………………………………….. .. 11

3.1 INTRODUCTION ... 11

3.2 SYSTEM ARCHITECTURE ... 11

3.3 USE CASE DIAGRAM .. 12

3.4 DATA FLOW DIAGRAM ... 13

3.5 CLASS DIAGRAM ... 15

3.6 INPUT DESIGN .. 16

3.7 OUTPUT DESIGN .. 17

CHAPTER IV………………………………………………………………………………………..19

4.1 INTRODUCTION ... 19

4.2 MODULE DESCRIPTION .. 19

4.2.1 MOBILE APP MODULE .. 20

4.2.2 BROKER MODULE .. 20

4.2.3 CONTROL MODULE ... 21

4.3 METHODOLOGY .. 21

4.3.1 AGILE METHODOLOGY ... 22

4.4 ALGORITHMS ... 24

4.4.1 MQTT Parsing Algorithm ... 25

4.4.2 Speech-to-text(STT) Algorithm ... 25

CHAPTER V……………………………………………………………………………………… ...27

5.1 INTRODUCTION ... 27

5.2 SYSTEM TESTING METRICS .. 28

5.2.1 Performance Evaluation .. 28

5.2.2 Functional Validation ... 28

5.2.3 Security Assurance ... 28

5.2.4 User Experience Validation ... 28

5.2.5 Reliability and Seamless Operation .. 29

FreeText
XI

5.3 TEST PLAN ... 29

CHAPTER VI……………………………………………………………………………………… . 30

6.1 INTRODUCTION ... 30

6.2 SCREENSHOTS ... 31

6.2.1 Authentication ... 31

6.2.2 Home Screen ... 32

6.2.3 Schedule Screen .. 34

6.2.4 Settings Screen .. 37

6.3 CODING .. 39

6.3.1 FRONT END ... 39

6.3.2 BACKEND .. 41

CHAPTER VII……………………………………………………………………………………. ... 42

7.1 CONCLUSION .. 44

7.2 FUTURE ENHANCEMENT ... 45

REFERENCES………...…………………………………………………………………………….47

FreeText
XII

ABSTRACT

The proposed Smart Home Automation System integrates IoT (Internet of Things or Web of Things)

to bring intelligence and convenience into the home environment. Leveraging IoT technology, the

system integrates various smart devices and sensors to automate household tasks such as lighting

control, fan control, and voice speech recogniton. The system allows users to remotely control and

monitor their home appliances and security systems via a smartphone offering real-time feedback and

control. At the heart of the system is a central microcontroller (Raspberry Pi), which connects to the

cloud and communicates with different smart devices using protocols like Wi-Fi or Bluetooth. The

system gathers environmental data using sensors (e.g., temperature, light, motion) and triggers specific

actions based on predefined user settings or real-time conditions. For instance, lights can be turned off

when no one is in the room, or the HVAC system can adjust temperature settings based on current

weather conditions. In addition to automating routine tasks, the system can enhance home security

through integrated motion detectors, smart locks, and cameras. It can notify homeowners of potential

security breaches and allow for remote monitoring of live video feeds. Energy efficiency is also a

critical feature, as the system optimizes electricity usage by regulating lights, heating, and cooling based

on occupancy or schedule, which helps reduce electricity costs and environmental impact. This project

demonstrates the feasibility of creating a smart home using IoT technologies and highlights the

potential for scalability as more devices are integrated into the system. Through the application of IoT,

this system not only improves comfort and convenience but also addresses growing concerns about

energy efficiency and home security.

FreeText
XIII

CHAPTER I

INTRODUCTION

1.1 BACKGROUND OF STUDY

The increasing advancement in digital technology, particularly the emergence of the Internet of Things

(IoT), has drastically transformed how we interact with our environment. IoT refers to the network of

physical devices embedded with sensors, software, and connectivity capabilities, enabling these devices

to collect and exchange data. One of the major applications of IoT is in smart home automation, where

various household appliances and systems are automated for better control, energy efficiency, and user

convenience. This project focuses on implementing a Smart Lighting System using a Raspberry Pi as

the control hub, a Flutter-built mobile application as the user interface, and MQTT as the

communication protocol. This seamless integration of hardware and software allows users to remotely

switch on or off a light bulb through a mobile app, providing a practical and real-world example of IoT.

The aim of this documentation is to provide a detailed explanation of the development process, system

architecture, and functionalities of this IoT-based Smart Lighting System. The Raspberry Pi, acting as

the main controller, interfaces with a relay switch to control the bulb. The Flutter mobile app, in turn,

sends MQTT messages to the Pi for execution. With its simple yet scalable design, this system is an

ideal foundation for further enhancements in smart home automation.

1.2 OBJECTIVES

The objective is to develop an IOT or WOT based system that will be able to perform the following

tasks in the home industry:

1.2.1 Implement an IoT solution that can be used for real-world smart

home automation tasks.

The Core objective is to practically implement an Internet of Things (IoT) solution that addresses real-

world smart home automation needs. This involves designing and deploying a functional system that

allows users to remotely monitor and control home appliances such as lights, fans, and other electrical

devices through connected technology. The aim is to demonstrate how IoT can enhance convenience,

FreeText
1

energy efficiency, and security within a household by integrating sensors, microcontrollers, and

communication protocols into a seamless, user-friendly automation system.

1.2.2 Develop a simple yet powerful mobile app for remote control of

lighting system.

The project aims to develop a simple yet powerful mobile application that enables remote control of

the lighting system within a smart home environment. The app will serve as an intuitive user interface,

allowing users to switch lights on or off, monitor their status, and potentially schedule operations from

any location. The focus is on creating a lightweight, responsive, and user-friendly application that

communicates effectively with the IoT hardware, offering both functionality and convenience to

enhance everyday living.

1.2.3 Utilize the MQTT protocol for lightweight, real-time communication

between the app and the Raspberry Pi.

This objective aims to implement the MQTT (Message Queuing Telemetry Transport) protocol to

establish efficient, lightweight, and real-time communication between the mobile application and the

Raspberry Pi. MQTT is a highly reliable protocol widely used in IoT systems due to its minimal

overhead and publish-subscribe architecture, which supports fast and scalable data transmission. By

leveraging MQTT, the project ensures seamless interaction between the user interface and the hardware

components, enabling prompt control commands and status updates essential for a responsive and

dependable smart home automation experience.

1.2.4 To create a modular system that can be expanded to include

additional sensors, appliances, or AI-based decision-making

To design a modular and scalable system architecture that allows for future expansion and integration

of additional components such as sensors, appliances, or AI-based decision-making modules. By

adopting a flexible design approach, the system can easily accommodate evolving smart home needs,

supporting features like environmental monitoring, energy optimization, or intelligent automation. This

ensures the solution remains adaptable, future-proof, and capable of supporting advanced

functionalities as technology and user requirements evolve.

FreeText
2

1.2.5 To explore open-source technologies for cost-effective, scalable, and

secure automation projects.

The System aims to explore and leverage open-source technologies to develop a cost-effective,

scalable, and secure smart home automation system. By utilizing widely supported open-source tools

and platforms, the project not only reduces development costs but also promotes transparency,

flexibility, and community-driven innovation. This approach enables the creation of a robust solution

that can be easily maintained, enhanced, and scaled, while ensuring security and reliability in real

world applications.

1.3 SYSTEM DESCRIPTION

The proposed smart home automation system is composed of three primary components: a Raspberry

Pi microcontroller, a mobile application developed using Flutter, and a lighting bulb connected via a

relay module. The system enables users to control the lighting either through the mobile application or

via integrated voice commands, offering a hands-free, user-friendly experience. The mobile app serves

as the central user interface, allowing users to send control commands that are transmitted to an MQTT

broker. The Raspberry Pi, which is subscribed to specific topics on the broker, receives these commands

and responds by toggling its GPIO pins to activate or deactivate the relay, thereby switching the lighting

bulb on or off as instructed. In addition to manual control through the app, the system is equipped with

voice integration functionality, enabling users to issue voice commands to perform the same actions

seamlessly. This enhances accessibility and convenience, particularly in situations where physical

interaction with the app may be impractical. Furthermore, the system supports two-way communication

by sending real-time feedback messages from the Raspberry Pi back to the mobile application, updating

the user on the current status of the light (e.g., ON or OFF). This architecture is designed for flexibility,

responsiveness, and scalability. The use of the MQTT protocol ensures lightweight and efficient

message delivery, even in low-bandwidth environments, while the intuitive Flutter-based app interface

provides a smooth and engaging user experience. Overall, the system exemplifies a practical and

expandable IoT-based solution for modern smart home automation

1.4 LITERATURE REVIEW

FreeText
3

This section presents a review of selected studies relevant to the development of smart home automation

systems, highlighting key contributions in the field of IoT-based home control. In 2013, Baraka et al.

introduced a low-cost Arduino and Android-based energy-efficient home automation system featuring

smart task scheduling. Their work offered a comprehensive examination of the capabilities of

affordable microcontrollers and mobile platforms, emphasizing energy conservation and ease of

implementation.

In 2015, Bhide and Wagh proposed an intelligent, self-learning system for home automation using IoT

technologies. Their framework focused on adaptability, presenting an objective methodology for

selecting the most appropriate IoT platforms based on varying use cases, which underscored the

importance of system flexibility and user-specific customization.

The study conducted in 2016 by Huang and Tseng developed a predictive smart home system that

integrated heterogeneous networks with cloud computing. Their system employed a deep neural

network-based prediction algorithm designed to enhance responsiveness and efficiency, showcasing

the potential of artificial intelligence in real-time smart home environments.

More recently, Mehra (2022) demonstrated a Raspberry Pi–Flask web-based interface for smart home

control, emphasizing affordability, scalability, and sensor integration . Meanwhile, MDPI researchers

(2023) designed a secure smart plug capable of real-time energy monitoring and relay control via voice

commands and MQTT over Wi‑Fi mesh, underscoring security and efficient communication in voice-

enhanced systems. In the AI domain, a June 2025 Xiv paper introduced an innovative offline speech

recognition model for low-latency, decentralized voice control, addressing energy consumption and

privacy concerns.

These studies collectively demonstrate the evolution of smart home automation from basic control

systems to intelligent, predictive models, laying the foundation upon which the present project builds

by integrating real-time control, mobile and voice interfaces, and scalable IoT architecture.

 1.4.1 Summary Review

The reviewed systems each contribute valuable features—ranging from affordability and smart

scheduling to predictive modeling and voice integration—but often fall short in scalability, user-

friendliness, or reliance on stable internet connections. In contrast, this project presents a more practical

and well-rounded solution by combining a lightweight Flutter mobile app, MQTT-based real-time

FreeText
4

communication, and voice control through a modular Raspberry Pi setup. Unlike earlier works, it offers

flexibility, responsiveness, and ease of use, making it more adaptable and user-focused for real-world

smart home automation.

FreeText
5

CHAPTER II

SYSTEM ANALYSIS

2.1 INTRODUCTION

In recent years, the concept of smart homes has gained significant traction, driven by the rapid evolution

of Internet of Things (IoT) technologies and increasing demand for convenience, energy efficiency,

and enhanced security. A smart home integrates various electronic devices, appliances, and sensors into

a unified system that can be monitored and controlled remotely or automatically. This integration not

only improves user comfort but also optimizes energy usage and enhances the overall safety of the

home environment. As IoT devices become more affordable and accessible, the opportunity to

transform traditional homes into intelligent, connected spaces is more achievable than ever. With

mobile applications, cloud computing, and lightweight communication protocols like MQTT, users can

now interact with their home appliances in real time, whether they are at home or away. This project

proposes the development of a smart home automation system that utilizes a Raspberry Pi, relay-

controlled appliances, a Flutter-based mobile app, and voice command integration to deliver a flexible,

scalable, and efficient solution for modern home management. The system leverages the power of IoT

to streamline the interaction between users and their home devices, making day-to-day living more

convenient, responsive, and intelligent.

2.2 PROBLEM DEFINITION

As homes become increasingly populated with electronic devices, managing these appliances manually

has proven to be inefficient, time-consuming, and prone to human error. Traditional systems often

operate independently—lighting, heating, cooling, and security systems lack coordination, resulting in

increased energy consumption and operational inefficiencies. Homeowners commonly encounter issues

such as leaving lights or appliances on unintentionally, forgetting to adjust systems according to

environmental changes, or facing security concerns when away from home. Existing automation

solutions are often fragmented and costly, requiring different applications or platforms for each device,

which complicates control and reduces user convenience. Furthermore, many systems lack real-time

responsiveness and integration with intuitive technologies such as voice commands, limiting

accessibility for various users. These limitations highlight the need for a comprehensive solution that

FreeText
6

not only centralizes control but also offers remote accessibility, real-time feedback, energy

optimization, and scalability. The proposed IoT-based Smart Home Automation System addresses

these challenges by providing a unified, intelligent platform that allows users to control lighting via a

mobile app and voice commands, with real-time updates and communication facilitated through

MQTT. This solution not only reduces energy wastage and improves security but also enhances the

quality of life by simplifying the way people interact with their home environments.

2.3 EXISTING SYSTEM

Many commercial home automation systems are available in the market, such as Philips Hue

compatible lighting systems. However, these systems are often expensive, rely heavily on cloud-based

infrastructure, and may require professional installation. Moreover, many users are concerned about

privacy and the long-term costs associated with these platforms. On the other hand,we have alexa which

is offered by amazon. While these alternatives provide flexibility, they can be technically challenging

for beginners and lack robust app integration. DIY enthusiasts and developers often resort to using

Arduino or ESP8266-based solutions for automation. This project seeks to fill this gap by using a

Raspberry Pi and Flutter app, offering both ease of use and technical flexibility

2.4 FEASIBILITY STUDY

The Internet of Things (IoT) provides a highly feasible solution for implementing smart home

automation due to its ability to connect devices and enable real-time communication between them and

the cloud. In this project, IoT is used to facilitate seamless interaction between a mobile app, a

Raspberry Pi, and a relay-controlled lighting system. Its lightweight protocols, like MQTT, allow for

efficient data transfer, automation, and remote control. The system is cost-effective, scalable, and easy

to expand with additional features such as voice commands and environmental sensors. Overall, IoT

ensures the project is both technically practical and economically viable for modern home automation.

2.4.1 Executive Summary

The feasibility of this project was evaluated based on financial, operational, and technical

perspectives. Financially, the components required are low-cost and readily available. Operationally,

FreeText
7

the system is easy to use and maintain. Technically, the integration of MQTT, Flutter, and Raspberry

Pi ensures a reliable and scalable system.

2.4.2 Finding and Recommendations

The findings from this project demonstrate that the proposed smart home automation system is not only

functional but also highly applicable in real-world environments. The use of open-source technologies

such as the Raspberry Pi, MQTT protocol, and Flutter framework contributes to a low-cost and flexible

solution that is ideal for both educational settings and prototyping new ideas. The system proved to be

reliable in controlling lighting through both mobile and voice interfaces, with real-time responsiveness

and ease of use. Its modular design and scalability also make it adaptable for broader smart home

applications. Based on these results, it is recommended that future projects explore the integration of

additional devices such as ceiling fans, smart door locks, motion sensors, and temperature or humidity

monitors. Incorporating these elements would enhance automation, improve energy efficiency, and

expand the overall functionality of the system, making it even more robust and aligned with the

evolving demands of modern smart homes.

2.5 PROPOSED SYSTEM

The proposed smart home automation system is a robust, modular, and scalable solution designed to

bring real-time control and convenience into everyday household management. At its core, the system

integrates a Flutter-based mobile application, an MQTT broker, and a Raspberry Pi microcontroller

connected to a relay module. The mobile application provides an intuitive and user-friendly interface

that allows users to remotely switch the lighting system ON or OFF from any location. When a

command is issued through the app, it is published to the MQTT broker—a lightweight, efficient

protocol ideal for IoT environments. The broker then forwards the message to the Raspberry Pi, which

is subscribed to specific control topics. Upon receiving the message, the Pi interprets it and toggles the

corresponding GPIO pin to activate or deactivate the connected lighting bulb via the relay module. This

architecture not only ensures low-latency communication and efficient operation but also lays the

foundation for a highly extensible system. The modular design allows for the seamless addition of more

devices, such as fans, door locks, or environmental sensors, and supports the integration of more

advanced control logic including automation schedules or AI-based decision-making. The use of

MQTT further enhances the system’s performance in low-bandwidth environments, ensuring smooth

FreeText
8

message delivery without significant overhead. Additionally, the system is designed with future

improvements in mind, such as implementing user authentication and role-based access control for

enhanced security. The combination of reliable hardware, efficient communication protocols, and a

clean user interface makes the proposed system not only technically sound but also highly usable and

practical for real-world deployment in both residential and educational settings.

2.6 SYSTEM OBJECTIVE

The primary objective of the proposed smart home automation system is to provide an energy-efficient,

user-friendly solution for controlling household devices remotely. By enabling users to switch

appliances such as lighting ON or OFF through a mobile application, the system helps reduce

unnecessary energy consumption and promotes responsible usage. Remote access allows users to

monitor and manage their devices from anywhere, enhancing convenience, especially when away from

home. Furthermore, the system is designed with a clean and intuitive user interface, ensuring ease of

use for individuals with varying levels of technical expertise. These objectives collectively aim to

improve daily living by making home management smarter, more efficient, and accessible.

2.6.1 Energy-efficiency

Energy efficiency is a fundamental objective of the proposed smart home automation system. By

enabling precise control over household devices such as lighting, the system helps minimize

unnecessary energy consumption. Traditional home setups often lead to lights or appliances being left

on unintentionally, resulting in wasted electricity and higher utility bills. Through automation and real-

time control, users can ensure that devices operate only when needed, thus conserving energy. The

system’s capability to provide timely feedback and support scheduling further enhances energy savings

by allowing devices to turn off automatically after a set period or based on environmental conditions.

Ultimately, promoting energy-efficient behavior not only reduces operational costs but also contributes

to broader environmental sustainability goals by lowering the household’s carbon footprint.

2.6.2 Remotely Access

Remote access is another critical objective that significantly enhances the convenience and

functionality of the smart home automation system. By integrating IoT technology and a mobile

application, users gain the ability to control their home devices from virtually anywhere with an internet

FreeText
9

connection. Whether at work, traveling, or simply away from a particular room, users can switch lights

on or off, check device status, or activate preset routines without being physically present. This

capability not only improves user convenience but also strengthens home security by allowing users to

simulate occupancy or respond to unexpected situations immediately. The system’s use of the MQTT

protocol ensures that commands and status updates are transmitted quickly and reliably, making remote

control seamless and responsive.

2.6.3 Easy user interface

An easy-to-use interface is essential to ensure that smart home technology is accessible to a wide range

of users, regardless of their technical proficiency. The proposed system’s mobile application is designed

with simplicity and clarity in mind, featuring intuitive controls and clear visual feedback. This user-

centered design approach reduces the learning curve, enabling users to effortlessly operate and

customize their home automation settings. By offering straightforward navigation and responsive

interaction, the system encourages consistent use and maximizes the benefits of automation.

Additionally, the integration of voice command capabilities further simplifies control, providing a

hands-free option that enhances accessibility for users with mobility challenges or those who prefer

voice interaction. Overall, the focus on usability ensures that the system is practical and appealing for

everyday use.

2.7 SYSTEM SPECIFICATION

The system specification outlines the essential hardware and software components required for the

effective development and implementation of the proposed smart home automation system. It defines

the technical foundation of the project, detailing the devices, platforms, communication protocols, and

development tools used to ensure seamless integration and functionality. This specification serves as a

blueprint for building a reliable, scalable, and user-friendly system capable of real-time control and

automation within a smart home environment.

2.7.1 Software Requirements

Hardware components on their own cannot build the app and execute successfully as needed, hence we

also need the software requirements to help us build the mobile application and establish the required

configurations. Here are the essential software requirements needed for this application:

FreeText
10

2.7.1.1 Flutter SDK

Flutter SDK is an open-source UI software development kit created by Google, and it is used in this

project for developing the mobile application that serves as the user interface for the smart home

automation system. Flutter allows for the creation of natively compiled applications for both Android

and iOS from a single codebase, which significantly reduces development time and ensures consistent

performance across platforms. The framework offers a rich set of pre-built widgets and tools that enable

the creation of highly responsive and visually appealing interfaces. In this system, the Flutter app allows

users to interact with the lighting system by sending commands and receiving feedback in real time. Its

support for asynchronous operations, network communication, and integration with MQTT libraries

makes it well-suited for IoT-based applications.

2.7.1.2 Eclipse Mosquitto

Eclipse Mosquitto is a lightweight, open-source message broker that implements the MQTT (Message

Queuing Telemetry Transport) protocol. It is used in this project to facilitate efficient and reliable

communication between the mobile application and the Raspberry Pi. Mosquitto acts as the central hub

where messages are published by the mobile app and subscribed to by the Raspberry Pi. The MQTT

protocol’s publish-subscribe model ensures low-latency, low-bandwidth communication, which is ideal

for IoT environments. By using Mosquitto, the system can maintain real-time updates, minimize

network overhead, and ensure consistent delivery of control commands and status messages. Its

compatibility with various platforms and ease of configuration make it a robust choice for message

brokering in home automation systems.

2.7.1.3 Python

Python is a powerful and versatile programming language that is used in this project to control the

GPIO (General Purpose Input/Output) pins of the Raspberry Pi. These pins are connected to the relay

module, which in turn controls the lighting system. Python scripts run on the Raspberry Pi, continuously

listening to MQTT messages and executing the appropriate logic to turn the lights ON or OFF. Python’s

readability and extensive library support make it ideal for rapid development and integration of

automation logic. Additionally, it allows for easy implementation of additional features such as

feedback messages, error handling, logging, and potential future extensions like sensor data processing

or AI-based decision-making.

FreeText
11

2.7.1.4 Raspbian - OS

Raspbian, now officially known as Raspberry Pi OS, is the operating system used to run the Raspberry

Pi in this project. It is a Debian-based OS optimized specifically for the Raspberry Pi hardware, offering

a stable, secure, and resource-efficient environment. Raspbian provides all the necessary tools and

drivers to interact with hardware components such as the GPIO pins, and it supports a wide range of

programming languages, including Python. It also offers compatibility with MQTT clients, network

services, and development tools. The lightweight nature of Raspbian ensures that the system remains

responsive and power-efficient, even while running multiple processes such as MQTT communication,

Python scripts, and system monitoring tasks.

2.7.2 Hardware Requirements

The successful implementation of the smart home automation system relies on a carefully selected set

of hardware components that facilitate control, communication, and prototyping. Each component

plays a crucial role in building a functional, scalable, and reliable system. The following are the primary

hardware requirements:

2.7.2.1 Raspberry Pi 4

The Raspberry Pi 4 serves as the core processing unit of the system. It is a powerful single-board

computer capable of running full operating systems like Raspbian and executing scripts to control

external devices. It provides GPIO (General Purpose Input/Output) pins used to interface with hardware

such as relay modules and sensors. The Raspberry Pi handles communication with the MQTT broker,

processes commands received from the mobile application, and controls the AC bulb accordingly. The

Pi 4 offers more processing power and RAM, while the 3B remains cost-effective and suitable for

simpler tasks. Either model supports wireless networking, making them ideal for IoT-based smart home

applications.

2.7.2.2 5v Relay Module

The 5V relay module acts as a bridge between the low-voltage control signals from the Raspberry Pi

and the high-voltage AC power used by household appliances like bulbs. In this project, the relay

module is used to safely control the switching of an AC light bulb. When triggered by the GPIO pin of

FreeText
12

the Raspberry Pi, the relay closes or opens the circuit, allowing or cutting off current to the bulb. The

module provides electrical isolation and safety features that protect the control circuitry from high-

voltage surges, making it a critical component for reliable and secure operation.

2.7.2.3 AC Bulb and Holder

An AC bulb along with its holder serves as the controlled appliance in this project, representing typical

household devices that would be automated in a smart home setup. The bulb provides visual feedback

and serves as the proof of concept for the system’s ability to turn devices ON or OFF through commands

sent via the mobile app. It connects directly to the relay module, which switches its power supply based

on the signals processed by the Raspberry Pi.

2.7.2.4 Jumper Wires and Breadboard

Jumper wires and a breadboard are used for setting up and testing circuit connections during the

development phase. They allow for flexible, tool-free assembly of electronic components, making it

easy to prototype and troubleshoot the system without soldering. These tools are essential for

connecting the Raspberry Pi’s GPIO pins to the relay module and other components, enabling quick

adjustments and safe experimentation as the system is being built and tested.

2.7.2.5 Android Phone

An Android smartphone is used to run the Flutter-based mobile application developed for this project.

The phone acts as the primary user interface, allowing users to send control commands to the MQTT

broker and receive feedback on the status of the lighting system. Since Flutter supports both Android

and iOS, the system remains flexible; however, an Android device is preferred during development and

testing due to easier debugging and deployment capabilities.

 2.7.2.6 Computer

A personal computer or laptop is required for developing the mobile application, writing Python scripts,

configuring the Raspberry Pi, and managing the overall project. Development tools such as the Flutter

SDK, Python IDEs, and terminal utilities for Raspbian are installed on the computer. It serves as the

FreeText
13

base for coding, compiling, testing, and deploying all software components that make the system

function.

 2.7.2.7 Wi-Fi Module

Reliable internet connectivity is essential for MQTT-based communication between the mobile

application and the Raspberry Pi. Most Raspberry Pi 3B and 4 models come with built-in Wi-Fi

modules; however, an external USB Wi-Fi adapter can be used if stronger or more stable connectivity

is required. The Wi-Fi module ensures that the Raspberry Pi stays connected to the local network,

allowing it to publish and subscribe to MQTT topics in real time and maintain seamless operation of

the home automation system.

FreeText
14

CHAPTER III

SYSTEM DESIGN

3.1 INTRODUCTION

The system design forms the critical backbone of the smart home automation project, providing a

detailed architectural framework that guides the development, integration, and implementation of all

system components. It involves the strategic planning of how data will flow through the system, how

each module will interact, and how these interactions will contribute to achieving seamless, real-time

automation. A well-thought-out design ensures that the system is not only functional, but also efficient,

scalable, secure, and maintainable over time. In this project, the design incorporates key layers,

including the user interface, the communication protocol layer, and the hardware control logic—each

playing a distinct and interdependent role. The mobile application developed using Flutter serves as the

front-end interface, offering an intuitive and user-friendly means for users to control and monitor their

home appliances. It communicates with the back-end system via the MQTT protocol, which facilitates

lightweight, fast, and reliable message delivery between the app and the Raspberry Pi. The Raspberry

Pi, running on Raspbian OS, interprets incoming commands and controls a relay module that switches

AC devices such as lighting on or off. This structured flow of information—from user input to device

actuation—ensures precise execution and real-time responsiveness. Furthermore, the modular nature

of the design allows for future expansion of the system to support additional appliances such as fans,

door locks, and sensors, as well as more advanced features like automation scheduling and AI-based

decision-making. Security, flexibility, and user accessibility are also factored into the design, making

it robust enough for practical home use while remaining adaptable to educational, prototyping, and

commercial applications. Overall, the system design is a deliberate and comprehensive effort to ensure

that each component—software and hardware—functions in harmony to deliver a reliable, energy-

efficient, and user-friendly smart home experience.

3.2 SYSTEM ARCHITECTURE

The system architecture of this smart home automation project serves as a comprehensive blueprint that

defines the overall structure, design principles, and interaction logic of the entire system. It lays out a

FreeText
15

high-level view of how various components are organized and how they communicate to perform

specific tasks in a coordinated and efficient manner. A well-defined architecture is essential for

maintaining clarity, consistency, and scalability throughout the system's development lifecycle. It

establishes clear boundaries between different functional layers, supports modularity, and ensures that

each component interacts seamlessly without creating unnecessary dependencies. In this project, the

architecture is divided into three core layers: Application Layer, Communication Layer, and the

Device Layer. Each of these layers is responsible for specific tasks and communicates with the others

to ensure smooth data flow and command execution. The Application Layer is represented by a Flutter-

based mobile application that acts as the primary user interface, allowing users to send control

commands with ease and convenience. The Communication Layer consists of the MQTT broker, which

acts as a reliable, lightweight messaging system that handles the publication and subscription of

messages between the app and the hardware. This layer ensures real-time, low-latency communication,

making it ideal for IoT-based systems. Finally, the Device Layer includes the Raspberry Pi, the relay

module, and the AC lighting bulb—components responsible for receiving instructions and physically

executing the required actions, such as turning the light ON or OFF. Together, these layers form a

robust and cohesive architectural model that promotes efficiency, simplifies development, and supports

future scalability. The separation of concerns within the architecture not only enhances maintainability

and performance but also provides a clear path for integrating additional smart home features such as

motion sensors, temperature monitoring, or voice assistants. This architectural design ensures that the

system is both practical for current use and flexible enough to evolve with emerging technologies and

user demands.

Figure 3.2.1 System Architecture

FreeText
16

3.3 USE CASE DIAGRAM

The use case diagram serves as a visual representation of the functional interactions between the user

and the smart home automation system, following the Unified Modeling Language (UML) standard. It

provides a high-level overview of how the user communicates with the system to perform various tasks

and how the system responds to those interactions. In this project, the primary actor is the user, who

operates the system through a mobile application developed using Flutter. The core use cases include

turning the light ON, turning the light OFF, receiving real-time feedback on the light's current status,

and issuing voice commands to perform the same actions. When the user interacts with the app—either

by tapping the interface or speaking a command—the system processes the input and sends a control

message via the MQTT protocol to a broker. This broker acts as a bridge, relaying the command to a

Raspberry Pi, which then activates or deactivates the connected GPIO pin controlling a relay module.

The relay, in turn, switches the AC-powered light bulb ON or OFF depending on the user's request. In

addition to executing commands, the Raspberry Pi is also configured to send back status messages

through the same MQTT broker, enabling the mobile app to display the current state of the light, thereby

providing a complete feedback loop. This two-way communication enhances reliability and ensures

users are always informed of the system’s status. Moreover, the app features built-in voice recognition,

allowing users to control the lighting using natural language voice commands such as “Turn on the

light” or “Switch off the light.” This voice control feature increases accessibility, making the system

more user-friendly for people with limited mobility or those seeking hands-free operation. Overall, the

use case diagram encapsulates a responsive and intelligent interaction framework, emphasizing the

convenience, real-time control, and flexibility that the proposed system brings to modern smart home

environments.

FreeText
17

Figure 3.3.1 Use Case Diagram

3.4 DATA FLOW DIAGRAM

The Data Flow Diagram (DFD) is a vital tool in understanding how data moves through the proposed

smart home automation system, from user interaction to the physical operation of connected devices.

It provides a clear, structured representation of the processes, data stores, and external entities involved

in the system. In this context, the DFD outlines the flow of data beginning with the user's interaction

with the mobile application—either through touch or voice command. This input is processed by the

app and translated into a control message, which is then transmitted to an MQTT broker. The broker

acts as the central communication hub, forwarding the message to the Raspberry Pi, which serves as

the system’s local controller. Once the Raspberry Pi receives the command, it interprets the instruction

and activates the appropriate GPIO pin to either switch the relay ON or OFF, effectively controlling

FreeText
18

the AC bulb. Additionally, the Raspberry Pi generates a status response that flows back through the

broker to the mobile application, ensuring the user receives real-time feedback about the system's

current state. This cyclic, bidirectional flow of data between the user, communication layers, and device

layer is critical for maintaining system accuracy, responsiveness, and user trust. The DFD not only

illustrates the individual roles of the broker, Raspberry Pi, and GPIO control logic but also emphasizes

how these components interact seamlessly to enable efficient, real-time automation in a smart home

environment.

Figure 3.4.1 Data Flow Diagram

FreeText
19

3.5 CLASS DIAGRAM

The class diagram plays a critical role in defining the static structure of the smart home automation

system by detailing the various classes, their attributes, behaviors (methods), and the associations or

relationships among them. As an essential part of object-oriented system design, the class diagram

allows for a deeper understanding of how the system is logically organized and how different

components communicate internally. It provides a blueprint that helps guide the development process,

ensures clarity during implementation, and lays the groundwork for maintainability and scalability. In

this particular project, the class diagram models core classes such as ̀ MobileApp`, ̀ VoiceRecognition`,

`MQTTClient`, `MessageHandler`, `RaspberryPiController`, and `RelayModule`, each of which has a

well-defined role in ensuring the system functions as intended. The `MobileApp` class is responsible

for handling user interaction—both through touch and voice—and initiating control requests. The

`VoiceRecognition` class processes spoken commands and translates them into executable app actions.

The `MQTTClient` class manages the messaging logic, allowing the app to publish commands and

subscribe to feedback topics. The `MessageHandler` class acts as an intermediary that processes

incoming and outgoing data to and from the MQTT broker. On the hardware side, the

`RaspberryPiController` class interprets the received MQTT messages and manages the appropriate

GPIO pins to control physical devices such as lights. The `RelayModule` class represents the actual

interface to the hardware, switching electrical current based on the signals received. These classes are

linked through associations and method calls, making the overall architecture more modular and easier

to debug or extend. For instance, adding additional features like fan or lock control would require

minimal changes—mainly adding new classes that follow the same structural pattern. Furthermore, the

class diagram facilitates clearer documentation and better communication among team members,

particularly in collaborative or educational environments. It also supports the design of unit tests and

simulation scenarios before actual hardware deployment. Ultimately, the class diagram provides not

only a technical reference but also a conceptual framework that aligns with the principles of clean

architecture, ensuring the smart home automation system is robust, extendable, and professionally

structured.

FreeText
20

Figure 3.5.1 Class Diagram

3.6 INPUT DESIGN

The input design of the smart home automation system focuses on creating a user-friendly, intuitive

interface that enables users to interact with the system easily and efficiently. It is a critical component

of the overall system design, as it determines how the user communicates their intent to the system—

whether through button taps or voice commands. In this project, the input primarily consists of simple

touch-based actions on the mobile application, where users tap clearly labeled and color-coded buttons

to control the lighting system. The design ensures that ON and OFF states are visually distinguishable,

allowing users to understand the current state of the light at a glance. Each button is strategically placed

and sized to accommodate different screen sizes and user needs, enhancing accessibility and reducing

the chance of errors. Additionally, the interface includes confirmation messages or subtle feedback—

such as icon changes or toast notifications—to prevent accidental activations and to reassure the user

that their input has been successfully received and processed. The input design also integrates voice

FreeText
21

command functionality, where spoken instructions are interpreted by the app’s built-in voice

recognition module and mapped to corresponding system actions. This feature enhances the hands-free

control of home devices, making the system more inclusive and adaptable to modern user expectations.

Overall, the input design prioritizes clarity, responsiveness, and error prevention, ensuring that users

can interact with the system confidently and comfortably.

Figure 3.6.1 Input Design Diagram

3.7 OUTPUT DESIGN

The output design of the smart home automation system focuses on delivering clear, timely, and

meaningful feedback to the user in response to their interactions with the system. It plays a crucial role

in ensuring transparency and enhancing user confidence by confirming that their commands—whether

touch-based or voice-activated—have been successfully executed. In this project, the primary output is

the real-time status display within the mobile application, which informs the user whether the light is

currently ON or OFF. This feedback is displayed through dynamic interface elements such as color

changes, icons, or status text updates, all designed to be easily noticeable and understandable at a

glance. The system also supports subtle feedback mechanisms such as toast messages or animations

that confirm each successful command execution. These outputs are generated after the Raspberry Pi

processes the MQTT message and activates the relay module, which physically switches the light. Once

this action is completed, the system sends a confirmation message back to the app through the MQTT

broker, ensuring the feedback loop is complete. This real-time two-way communication enhances the

reliability and interactivity of the system. Additionally, the output design takes into account

accessibility by maintaining a clean, minimalistic layout and using contrasting colors and readable

fonts, ensuring it remains user-friendly across various devices and lighting conditions. Altogether, the

FreeText
22

output design ensures that users are always informed about the current state of their home devices,

reinforcing trust and delivering a seamless smart home experience.

Figure 3.7.1 Output Design

FreeText
23

CHAPTER IV

SYSTEM DEVELOPMENT

4.1 INTRODUCTION

The system development section provides a comprehensive overview of the processes, methodologies,

and tools used in building the smart home automation system. This stage marks the transformation of

theoretical concepts and design blueprints into a fully functional solution, integrating both hardware

and software components to achieve the intended objectives. In this project, the development process

involved a combination of mobile app development, embedded system programming, and network

communication setup, all orchestrated to create a seamless user experience for home automation. At

the heart of the development is the Flutter framework, which was used to build a responsive and

intuitive cross-platform mobile application that allows users to control their home lighting through

simple button taps and voice commands. Parallel to this, the Raspberry Pi was configured to act as the

central controller for the lighting system, running a Python script that listens for incoming commands

over the MQTT protocol and triggers GPIO actions to switch the relay module—and ultimately the

connected light bulb—ON or OFF. The Eclipse Mosquitto MQTT broker served as the communication

bridge between the mobile application and the Raspberry Pi, enabling lightweight, real-time messaging

over a local Wi-Fi network. Special attention was given to designing a modular and scalable system

architecture, which would allow future integration of additional smart devices like fans, locks, and

sensors without overhauling the entire system. During development, various testing stages were

employed to ensure stability, including unit testing of individual components and system-level testing

to verify the communication flow and responsiveness. The system also underwent iterative

improvements based on practical observations, particularly in optimizing user interaction, handling

potential command conflicts, and refining feedback mechanisms. Overall, the system development

process was rooted in modern IoT practices and agile principles, ensuring that the final implementation

is not only functional and reliable but also extensible and well-aligned with the needs of contemporary

smart living environments.

FreeText
24

4.2 MODULE DESCRIPTION

The module description section outlines the core components of the smart home automation system

and their respective roles in ensuring smooth operation. The system is divided into three main modules:

Mobile Application Module, Communication Module, and Device Control Module. The Mobile

Application Module, developed using Flutter, allows users to interact with the system through touch or

voice commands, sending control requests and displaying real-time feedback. The Communication

Module is powered by the MQTT protocol and handled through the Eclipse Mosquitto broker, which

efficiently routes messages between the mobile app and the hardware. Finally, the Device Control

Module includes the Raspberry Pi, a relay module, and an AC bulb, where the Pi interprets incoming

messages and triggers the appropriate GPIO actions to switch the light ON or OFF. These modules

work together to deliver a responsive, scalable, and user-friendly smart home solution.

4.2.1 MOBILE APP MODULE

 The Mobile App Module serves as the primary interface between the user and the entire system.

Developed using the Flutter SDK, this cross-platform mobile application allows users to interact with

the lighting system using intuitive touch-based controls and integrated voice commands. The app

presents a simple and user-friendly UI with clearly labeled ON and OFF buttons, color-coded to reflect

the current status of the light. When a user performs an action—such as tapping a button or giving a

voice command—the app sends an MQTT message to the broker, initiating communication with the

hardware controller. The app also subscribes to feedback topics, enabling it to display real-time status

updates and confirmations once the command has been executed. This module enhances user

experience by offering responsive controls, visual feedback, and voice accessibility, making the system

easy to operate for users of all technical backgrounds.

4.2.2 BROKER MODULE

The Broker Module is the core communication layer of the system, responsible for managing the

exchange of messages between the mobile application and the Raspberry Pi. This is handled through

Eclipse Mosquitto, a lightweight and open-source MQTT broker ideal for IoT applications. The broker

listens for messages published by the app, such as "Turn ON" or "Turn OFF", and forwards them to the

appropriate subscriber—in this case, the Raspberry Pi. It also handles messages sent back from the Pi

FreeText
25

to the mobile app, including feedback on the current status of the light. This publish-subscribe model

ensures decoupled and efficient communication, allowing multiple devices to communicate reliably in

real-time with minimal bandwidth usage. The use of MQTT makes the system scalable and flexible,

enabling future enhancements like the addition of new smart devices without significant changes to the

communication structure.

4.2.3 CONTROL MODULE

The Control Module encompasses the hardware responsible for executing the user's commands. It

includes the Raspberry Pi, a 5V relay module, and an AC bulb. When the Raspberry Pi receives a

command message from the broker, it parses the message and uses a Python script to toggle a designated

GPIO pin. This pin is connected to the relay, which then switches the AC bulb ON or OFF based on

the user's instruction. In addition to performing the requested action, the Raspberry Pi also sends a

status message back to the broker, which is then delivered to the mobile app for real-time feedback.

The control module is designed to be modular and extensible, allowing for the integration of additional

appliances such as fans, door locks, or sensors. It acts as the physical layer of the automation system,

bridging the digital instructions from the app with tangible, real-world electrical actions.

4.3 METHODOLOGY

The methodology used for the development of this smart home automation system was based on the

Agile framework, which promotes iterative development, continuous feedback, and adaptability

throughout the project lifecycle. Given the project's integration of both hardware and software

components, Agile provided the flexibility needed to manage complexity and respond to evolving

requirements. The entire development process was broken down into focused sprints, with each sprint

dedicated to specific tasks such as hardware setup and GPIO configuration, MQTT protocol integration

for real-time messaging, and mobile application development using Flutter, including both touch-based

and voice control features. At the end of each sprint, rigorous testing and evaluation were carried out

to ensure the functionality of each module, followed by documentation and improvements informed by

the results. This iterative approach allowed for early detection of issues, seamless integration between

modules, and progressive refinement of the system. Agile also supported continuous integration and

parallel development, making it easier to manage interactions between the mobile app, broker, and

Raspberry Pi. By maintaining a feedback-driven workflow and flexible planning, the Agile

FreeText
26

methodology significantly contributed to the successful and efficient development of a responsive,

scalable, and user-centric smart home automation solution.

 4.3.1 AGILE METHODOLOGY

The Agile methodology is a project management approach that involves breaking the project into

phases and emphasizes continuous collaboration and improvement.

Figure 4.3.1 Agile Methodology life Cycle

 4.3.1.1 Planning

The planning phase marked the beginning of the project and focused on defining clear goals, identifying

system requirements, and breaking down the project into manageable tasks. During this stage, the core

idea of automating home lighting using IoT was shaped, with specific features such as mobile control,

voice commands, and MQTT-based communication being prioritized. The entire system was divided

into modules—namely, the mobile app, broker communication, and Raspberry Pi control. Each module

was assigned to individual sprints based on dependencies and estimated time for implementation. A

project backlog was created, and milestones were established to guide the sprint cycles.

FreeText
27

 4.3.1.2 Design

In the design phase, both system and component-level designs were developed to guide

implementation. This included creating use case diagrams, class diagrams, and architectural blueprints

that described how different modules—like the mobile app, MQTT broker, and hardware controller—

would interact. System design also covered the input and output mechanisms, including the user

interface layout, voice command functionality, and GPIO configurations for hardware control. These

design artifacts helped ensure that each part of the system was planned with scalability, modularity,

and ease of integration in mind.

 4.3.1.3 Development

The development phase followed an iterative sprint structure, where each sprint targeted the completion

of a specific module or feature. The mobile application was developed using Flutter, providing cross-

platform compatibility and integrating voice control features. In parallel, the Raspberry Pi was

programmed using Python to control the GPIO pins based on MQTT messages. The Eclipse Mosquitto

broker was installed and configured to facilitate lightweight, real-time messaging between the app and

the hardware. With Agile, code was written, reviewed, and improved incrementally, allowing

continuous progress without waiting for the entire system to be built.

 4.3.1.4 Testing

Testing was a continuous process embedded into each sprint. After each development cycle, unit tests

were conducted on individual components—such as the relay control script, MQTT message parsing,

and app interface interactions—to validate their behavior. Integration testing ensured that

communication between the mobile app, broker, and Raspberry Pi was consistent and reliable. Special

emphasis was placed on testing voice recognition accuracy, system responsiveness, and real-time

feedback from the light status. Any bugs or inconsistencies discovered were addressed in the same or

following sprint, ensuring a stable and evolving system.

 4.3.1.5 Deployment

Deployment involved bringing the developed components together in a live environment. The mobile

application was tested on an Android device to ensure full functionality outside the development

FreeText
28

emulator. The Raspberry Pi was configured with all necessary software (Python scripts, Mosquitto

client) and connected to the relay and AC light bulb. The system was deployed over a local Wi-Fi

network, and MQTT topics were verified for real-time communication. This phase marked the

transition from development to real-world application, simulating how users would actually interact

with the system.

 4.3.1.6 Operations and Maintenance

Operations consisted of running the system in its intended environment and monitoring performance

over time. This included observing how the system handled multiple commands, whether the feedback

loop was consistent, and ensuring that the voice feature worked reliably in various ambient conditions.

Real-time logging and MQTT message tracing were used to identify operational issues. User feedback

and personal usage insights during this stage helped refine the system further, especially in improving

UI responsiveness and handling edge cases. Maintenance is an ongoing phase that ensures the system

continues to function optimally after deployment. Any bugs or performance bottlenecks identified

during operation were logged and resolved. Updates were applied to improve system performance, such

as refining the voice recognition model, optimizing MQTT communication for better latency, and

making small UI adjustments for better usability. This phase also opens the door for future

enhancements, such as integrating additional smart devices or implementing cloud-based remote

access, keeping the system scalable and future-ready. Maintenance is an ongoing phase that ensures the

system continues to function optimally after deployment. Any bugs or performance bottlenecks

identified during operation were logged and resolved. Updates were applied to improve system

performance, such as refining the voice recognition model, optimizing MQTT communication for

better latency, and making small UI adjustments for better usability. This phase also opens the door for

future enhancements, such as integrating additional smart devices or implementing cloud-based remote

access, keeping the system scalable and future-ready.

4.4 ALGORITHMS

The algorithms used in this smart home automation project form the logical core of the system, enabling

reliable control, communication, and feedback mechanisms between the user interface and the physical

hardware. These algorithms are designed to process user input—whether through button taps or voice

commands—translate them into control messages via the MQTT protocol, and execute corresponding

FreeText
29

actions on the Raspberry Pi. They also manage feedback by continuously monitoring the status of the

light and sending real-time updates back to the mobile application. Simple yet efficient logic structures

and control flow techniques were applied to ensure quick responsiveness, accurate device toggling, and

seamless two-way communication. These algorithms not only enhance the performance of the system

but also ensure energy efficiency, reliability, and scalability, aligning with the core objectives of the

smart home automation solution.

4.4.1 MQTT Parsing Algorithm

The MQTT Message Handling Algorithm is fundamental to enabling reliable communication between

the mobile application and the Raspberry Pi using the MQTT protocol. This algorithm operates by

having the Raspberry Pi run a Python script that connects to the MQTT broker and subscribes to a

specific topic, such as home/light/control. When the user interacts with the app or issues a voice

command, the app publishes a control message—like "TURN_ON" or "TURN_OFF"—to this topic.

Upon receiving the message, the MQTT client on the Raspberry Pi triggers a callback function that

parses and interprets the instruction. If the command is "TURN_ON", the Raspberry Pi sets the

designated GPIO pin connected to the relay to a high state, activating the relay and turning the light on.

Conversely, if the command is "TURN_OFF", the GPIO pin is set low, switching the light off. After

executing the requested action, the Raspberry Pi publishes a status update message such as "Light is

ON" back to another MQTT topic like home/light/status to provide real-time feedback to the mobile

application. This algorithm ensures lightweight, real-time communication that is efficient and scalable,

making the system responsive and reliable even in low-bandwidth environments.

4.4.2 Speech-to-text(STT) Algorithm

The Voice Command Interpretation Algorithm empowers users to control the lighting system through

natural spoken commands, enhancing accessibility and convenience. Within the Flutter mobile app, a

voice recognition module—is integrated to capture and convert spoken words into text. When the user

activates the voice input and says a command like “Turn on the light,” the app processes the audio,

transcribes it into text, and applies a keyword-matching algorithm to interpret the intent. Keywords

such as “on” or “turn on” are mapped to the internal command "TURN_ON", while phrases like “off”

or “turn off” correspond to "TURN_OFF". Once the appropriate command is determined, it is published

to the MQTT broker following the same messaging protocol used for manual input, which triggers the

FreeText
30

Raspberry Pi to execute the action accordingly. This algorithm significantly enhances the user

experience by enabling hands-free control, making the system more user-friendly and aligned with

modern smart home expectations.

FreeText
31

CHAPTER V

SYSTEM TESTING

5.1 INTRODUCTION

System testing is a critical phase in the development lifecycle of the smart home automation project,

aimed at verifying that the integrated system meets the specified requirements and functions correctly

in a real-world environment. Unlike unit testing, which focuses on individual components, system

testing evaluates the entire solution as a cohesive whole, ensuring that hardware, software,

communication protocols, and user interfaces work seamlessly together. Given that this project

integrates multiple modules—such as the Flutter-based mobile application, MQTT communication

infrastructure, and Raspberry Pi hardware controller—comprehensive system testing was essential to

validate the interaction between these components and to detect potential issues that could affect

usability, reliability, and performance. The testing process was designed to be iterative and methodical,

reflecting the Agile development methodology used throughout the project. Each sprint concluded with

testing phases to verify the newly developed features or improvements. Initial testing focused on

individual module functionality, such as validating MQTT message transmission and GPIO pin control

on the Raspberry Pi. Following successful unit tests, integration tests were conducted to ensure that

messages published by the mobile app correctly triggered hardware responses and that feedback

messages were accurately received and displayed by the app. Emphasis was also placed on testing the

voice command functionality to verify the accuracy of speech recognition and the correctness of

command interpretation. System testing involved a variety of scenarios designed to assess the system’s

robustness under different conditions, including network latency, command concurrency, and user

input errors. Real-time responsiveness was a key metric, as the system’s primary goal is to provide

instantaneous control and feedback for home automation tasks. Furthermore, the security and reliability

of the MQTT communication were scrutinized to prevent unauthorized access or message loss. The

feedback loop between the hardware and mobile app was monitored to ensure users were consistently

informed of the system’s current state, minimizing confusion and enhancing trust. In addition to

functional testing, usability tests were performed to evaluate the intuitiveness of the user interface and

the effectiveness of voice commands in real-life settings. These tests helped identify areas where the

interface could be refined for clarity and ease of use. The system was also tested across different

FreeText
32

Android devices to guarantee compatibility and performance consistency. Overall, the system testing

phase was comprehensive, encompassing functional, integration, usability, and reliability testing to

deliver a robust and user-friendly smart home automation system. The insights gained from testing

informed iterative improvements, ensuring that the final deployed solution meets user expectations and

industry best practices for IoT-based automation.

5.2 SYSTEM TESTING METRICS

System testing metrics provide essential measures to evaluate the quality, security, and performance of

the mobile application within the smart home automation system. Each metric targets key aspects

critical to the application's reliability and user satisfaction, offering a comprehensive assessment that

guides improvements and ensures the system meets its functional and experiential goals.

 5.2.1 Performance Evaluation

The first focus of our testing endeavors is on assessing the application's performance. This encompasses

scrutinizing its speed, responsiveness, and resource utilization under varying 27 conditions. By

subjecting the application to different scenarios and workloads, we aim to guarantee that it operates

seamlessly, providing users with swift and efficient interactions.

 5.2.2 Functional Validation

Functional validation metrics focus on verifying that the system’s features and operations perform as

intended according to the specified requirements. These metrics assess whether each function—such

as turning the light on or off, processing voice commands, and providing accurate feedback—works

correctly, ensuring the system delivers a reliable and seamless user experience.

 5.2.3 Security Assurance

Security assurance metrics evaluate the system’s ability to protect user data and prevent unauthorized

access or malicious attacks. These metrics ensure that communication channels, such as MQTT

messaging, are secure and that only authorized users can control home devices, thereby safeguarding

the system’s integrity and user privacy.

FreeText
33

 5.2.4 User Experience Validation

User experience validation metrics measure how intuitive, responsive, and satisfying the system is from

the user’s perspective. These metrics focus on interface usability, ease of navigation, responsiveness of

controls, and the effectiveness of voice command features to ensure a smooth and enjoyable interaction

with the smart home system.

 5.2.5 Reliability and Seamless Operation

Reliability and seamless operation metrics assess the system’s consistency in performing tasks without

failures or interruptions. These metrics track uptime, error rates, response times, and the ability to

maintain continuous communication between the app, broker, and hardware, ensuring the system

operates smoothly in real-world conditions.

5.3 TEST PLAN

The Test Plan outlines the comprehensive strategy for evaluating the application's various aspects. This

table outlines the different types of tests, their descriptions, the aims of each test, and the expected

results.

Test Case Type. Test Aim Expected results Test result

Functional

Testing

Validate the correctness

of each functional

component.

All features perform

as intended without

errors or unexpected

behavior

Successful

Usability Testing Assess the user

interface for ease of use

and overall user

experience

Users can navigate

the application

effortlessly, and the

interface is intuitive.

Successful

FreeText
34

Performance

Testing

Measure the efficiency

and reliability of the

application under varied

scenarios.

Application responds

quickly, maintains

responsiveness, and

utilizes resources

efficiently.

Successful

Security Testing Ensure the application

is resilient against

security threats and

vulnerabilities

Security measures

effectively protect

user data, and

vulnerabilities are

addressed.

Successful

Compatibility

Testing

Confirm the

application's

compatibility with

various devices and

operating systems.

Application

functions correctly

on different devices

and platforms.

Successful

Regression

Testing

Validate that

modifications or

additions do not

introduce issues to

existing functionalities.

Existing features

continue to operate

correctly after

updates or changes.

Successful

User Acceptance

Testing

Obtain feedback from

users to validate that the

application meets their

needs and expectations.

Users express

satisfaction, and the

application aligns

with their

expectations.

Successful

Load Testing Evaluate the

application's capacity to

handle different user

loads without

performance

degradation.

Application

maintains

performance and

responsiveness under

varying user loads.

Successful

FreeText
35

Table 5.3.1 Test Plan

FreeText
36

CHAPTER VI

SYSTEM IMPLEMENTATION

6.1 INTRODUCTION

System implementation represents the culmination of design and development efforts into a fully

functioning solution, where both the visual front end and backend logic are brought together to execute

the intended operations of the Smart Home Automation System. This phase goes beyond coding to

encompass the strategic integration of software frameworks, communication protocols, and hardware

components, ensuring that the entire system operates smoothly and reliably under real-world

conditions. In this project, the implementation integrates a Flutter-based mobile application and

Python-powered control logic on a Raspberry Pi, unified through the MQTT messaging protocol. The

Flutter app acts as the user’s control panel, providing a seamless interface where users can manage

home devices through intuitive touch controls or voice commands. Screens such as login pages, control

dashboards, and status displays are not only functional but designed with usability in mind, featuring

real-time status indicators, color-coded toggles, and confirmation alerts to guide user interaction. Visual

feedback mechanisms like spinners, alerts, and toast messages further enhance responsiveness and

clarity. On the backend, the system’s intelligence lies in Python scripts running on the Raspberry Pi.

These scripts utilize libraries like paho-mqtt for broker communication and RPi.GPIO for direct

hardware control, enabling precise and efficient switching of connected devices via GPIO pins. When

the app sends a command—such as turning a light ON—the message is routed through the Eclipse

Mosquitto broker, received by the Pi, and translated into an electrical signal that toggles the relay

module controlling the appliance. This architecture enables real-time interaction with minimal latency,

making the system not only responsive but highly energy-efficient. The hardware side of the

implementation involves configuring the Raspberry Pi with essential peripherals including a 5V relay

module, jumper wires, AC bulb and holder, a breadboard for prototyping, and a Wi-Fi-enabled

smartphone for issuing commands. All these components are connected and tested to ensure

synchronized operation. Moreover, screenshots of the mobile app interface are used as documentation

to showcase the implementation outcomes, demonstrating user navigation paths, functional controls,

and how feedback is delivered visually. Importantly, the system’s modularity allows easy expansion—

additional appliances such as fans, smart locks, or sensors can be integrated using the same core logic

FreeText
37

and protocols. This practical execution of both software and hardware underlines the system’s real-

world applicability, validating its role as a scalable, intelligent, and user-centric smart home automation

solution.

6.2 SCREENSHOTS

System screenshots are visual captures of the software in action, offering a precise snapshot of the user

interface at specific stages of interaction. These images play a vital role in system documentation by

showcasing how the application appears and functions in real-time scenarios. In the context of this

smart home automation system, screenshots illustrate key components of the Flutter-based mobile app,

including the login screen, dashboard interface, control buttons for toggling devices, feedback

messages, and the integration of voice command functionality. These visual elements highlight user

interaction patterns, system responsiveness, and the intuitive layout designed to facilitate seamless

control of home appliances. Screenshots are particularly important because they provide visual

confirmation of the system’s features and behaviors, bridging the gap between technical documentation

and user understanding. They simplify the explanation of dynamic processes such as system startup,

MQTT command issuance, voice input handling, and real-time feedback display. By visually

representing data input, processing logic, and output response, screenshots help communicate how the

system operates in actual use—something that text alone cannot fully capture. Moreover, system

screenshots serve as verification tools during evaluations, stakeholder presentations, and user training,

demonstrating that each module has been implemented as intended. They also support debugging and

future development by documenting the UI at various stages, providing a visual reference for

improvements or modifications. Overall, the inclusion of system screenshots enhances the clarity,

transparency, and credibility of the project, making them an indispensable part of the implementation

report.

 6.2.1 Authentication

The authentication module of the smart home automation system is built with robust biometric security

to ensure that only authorized users can access the application. It integrates seamlessly with the mobile

device’s native biometric settings, supporting both fingerprint and facial recognition depending on the

hardware capabilities of the phone. When a user attempts to open the app, they are immediately

prompted to verify their identity using one of these biometric methods. This process adds a critical

FreeText
38

layer of protection, preventing unauthorized access and securing control over home devices. If the

authentication attempt fails—whether due to an unrecognized fingerprint or incorrect facial scan—the

system blocks entry, maintaining the integrity and privacy of the smart home environment. By

combining advanced security with user-friendly functionality, the biometric authentication module

delivers a highly secure yet convenient login experience.

Figure 6.2.1.1 Login Authentication

 6.2.2 Home Screen

The home screen of the smart home automation app serves as the central hub for user

interaction and control. It is designed with simplicity and clarity in mind, featuring a

clean layout anchored by a bottom navigation bar that provides quick access to three

FreeText
39

main sections: Dashboard, Schedule, and Settings. The dashboard, which also functions

as the home screen, includes essential control features such as a toggle switch and a voice

command button, both used to turn the connected light on or off. Users can simply tap

the switch for manual control or use the voice button to issue spoken commands for

hands-free operation. At the center of the screen is a large animated bulb icon that

visually reflects the current state of the light—glowing when the light is on and dimmed

when it is off—offering intuitive, real-time feedback. This interactive design ensures

users can easily monitor and control their home environment with minimal effort while

enhancing the overall user experience through responsive visual elements.

FreeText
40

Figure 6.2.2.1 Home Screen

 6.2.3 Schedule Screen

The Schedule Screen in the smart home automation app is designed to give users a convenient way to

automate lighting control within the same day using a straightforward and user-friendly time picker

interface. Through this feature, users can select a specific time to either turn the light on or off, helping

to automate routine tasks and promote energy efficiency. The schedule applies only to the current day

and resets afterward, making it ideal for short-term use cases such as setting the light to switch off

before sleep or turn on during the evening hours without requiring repeated daily inputs. This focused,

same-day scheduling approach ensures simplicity while still offering meaningful automation

capabilities for daily routines. What makes this feature even more powerful is its integration with

FreeText
41

voice-based scheduling. Users can simply issue spoken commands like “Turn the light off at 9

PM,” and the app interprets and sets the schedule without requiring manual interaction. This hands-free

functionality greatly improves accessibility and convenience, especially for users who may be

multitasking or have limited mobility. Once a schedule is set—whether by touch or voice—the app

stores the timing logic and ensures that the relay is triggered accordingly through MQTT

communication with the Raspberry Pi. Overall, the Schedule Screen combines simplicity, flexibility,

and voice interactivity to enhance the smart home experience while keeping the system intuitive and

user-focused.

Figure 6.2.3.1 Schedule Screen

FreeText
42

Figure 6.2.3.1 Schedule Screen

FreeText
43

Figure 6.2.3.1 Schedule Screen

 6.2.4 Settings Screen

The Settings Screen of the smart home automation app offers users basic yet essential customization

options to personalize their experience with the system. The interface is clean and minimalistic,

presenting toggle buttons that allow users to enable or disable specific features—namely, face

authentication and voice feedback. These settings provide flexibility, giving users control over how

they interact with the app. For instance, if a user prefers not to use biometric security, they can simply

FreeText
44

turn off face authentication. Similarly, voice feedback, which provides audible confirmations of system

actions, can be toggled off for a quieter user experience. This straightforward design ensures that even

non-technical users can easily configure their preferences without navigating through complex menus.

By allowing users to manage core features based on their comfort and needs, the Settings section

enhances the system’s adaptability while maintaining simplicity and ease of use.

Figure 6.2.4.1 Settings Screen

FreeText
45

6.3 CODING

Coding is the backbone of any software development project, representing the translation of logic and

system requirements into a language that computers can understand and execute. In the context of this

smart home automation system, coding plays a central role in defining both the frontend user interface

and the backend control logic. The application involves writing instructions in multiple programming

languages-Dart for the Flutter mobile app and Python for the Raspberry Pi control scripts. Each piece

of code consists of structured elements such as variables to store values, control structures like loops

and conditionals to handle decision-making, and functions to modularize tasks and promote reusability.

Comments are also included throughout the codebase to improve readability and ease future

maintenance. The mobile app code defines the behavior of buttons, manages the flow of user input, and

communicates with the MQTT broker using external Dart libraries like `mqtt_client`. It also

incorporates native device features such as biometrics and voice recognition, which are accessed

through platform-specific plugins and APIs. On the hardware side, Python scripts are used to handle

GPIO pin interactions on the Raspberry Pi, where libraries such as ̀ paho-mqtt` and ̀ RPi.GPIO` manage

incoming MQTT messages and toggle relay states to control electrical appliances. Throughout the

coding process, developers utilize external packages and frameworks to simplify tasks that would

otherwise require extensive development time. These libraries not only streamline MQTT integration

and hardware communication but also ensure that the system is stable, responsive, and secure. After

writing the code, it is thoroughly tested to confirm that each function behaves as intended under

different conditions. Once verified, the code runs either natively on the device or via an interpreter,

allowing the system to respond in real-time to user actions—whether they come from a button press, a

voice command, or an automated schedule. Coding in this project is more than just technical

implementation; it is the means through which user needs are transformed into a fully operational,

interactive smart home system. The clear, modular, and scalable code structure ensures that the system

is not only functional today but also easy to extend with additional features or devices in the future.

6.3.1 FRONT END

The Front-End Coding subsection highlights the client-facing layer of the smart home automation

system, which is responsible for how users visually interact with and navigate the application. This

section focuses on the code that builds and renders the user interface, manages dynamic elements, and

FreeText
46

ensures smooth, responsive interactions. It details the technologies, frameworks, and design principles

used to create a visually appealing and user-friendly experience. Developed using the Flutter SDK, the

front-end leverages Dart programming to build cross-platform interfaces that are consistent, efficient,

and intuitive across different Android devices. This part of the project plays a crucial role in bridging

the user with the system’s core functionalities, from controlling devices to receiving feedback, all

within a clean and accessible interface.

For this project, here is the main.dart code.

import 'package:flutter/material.dart';

import 'package:get/get.dart';

import 'package:get_storage/get_storage.dart';

import 'package:kunyumba_clean/controllers/auth_controller.dart';

import 'package:kunyumba_clean/controllers/schedule_controller.dart';

import 'package:kunyumba_clean/controllers/settings_controller.dart';

import 'package:kunyumba_clean/controllers/voice_controller.dart';

import 'package:kunyumba_clean/controllers/voice_feeback_controller.dart';

import 'package:kunyumba_clean/home/splash_screen.dart';

import 'controllers/home_controller.dart';

import 'controllers/mttq_controller.dart';

void main() async {

 await GetStorage.init();

 // ✅ Initialize controllers here

 WidgetsFlutterBinding.ensureInitialized();

 Get.put(VoiceFeedbackController());

 Get.put(HomeController());

 Get.put(MqttController());

 Get.put(VoiceController());

 Get.put(ScheduleController());

 Get.put(AuthController());

 Get.put(SettingsController()); // 👈 Add this next to other controllers

 runApp(const MyApp());

}

class MyApp extends StatelessWidget {

 const MyApp({super.key});

 @override

 Widget build(BuildContext context) {

 return GetMaterialApp(

FreeText
47

 title: 'PANYUMBA',

 theme: ThemeData.dark().copyWith(

 scaffoldBackgroundColor: Colors.black,

 primaryColor: Colors.amber,

),

 home: const SplashScreen(),

 debugShowCheckedModeBanner: false,

);

 }

}

The `main.dart` file serves as the **entry point** of the smart home automation mobile application. It

initializes all essential controllers—such as for authentication, MQTT messaging, scheduling, voice

control, and user settings—using the GetX dependency injection framework. It also sets up persistent

local storage with `GetStorage`, ensures proper widget binding, and launches the app with a dark-

themed interface. The app starts at the ̀ SplashScreen`, and ̀ GetMaterialApp` is used to provide reactive

navigation and state management across the app, ensuring a smooth and structured user experience.

6.3.2 BACKEND

The backend of the Smart Home Automation System plays a pivotal role in orchestrating the core

operational logic, ensuring seamless communication between the user-facing mobile application and

the physical hardware components. Acting as the system’s control center, the backend is built using

Python and runs on a **Raspberry Pi**, a compact yet powerful computing device that serves as

the hardware hub of the automation environment. It leverages the **MQTT protocol** to subscribe to

specific topics and listen for commands issued from the Flutter mobile app—such as turning a light on

or off, or executing a scheduled task. Upon receiving a message through the MQTT broker (e.g., Eclipse

Mosquitto), the backend interprets the command and translates it into real-time actions by toggling

GPIO pins connected to relay modules, which in turn control electrical appliances like lighting.

Beyond basic device control, the backend also manages two-way communication by sending **status

updates** back to the app, ensuring users receive immediate feedback regarding the current state of

their devices. This real-time responsiveness is crucial for maintaining user confidence and system

reliability. Additionally, the backend is equipped with logic for **connection monitoring**, **error

FreeText
48

handling**, and **system recovery**, enabling it to detect failed operations or disconnections and

respond accordingly. These features make the system robust against faults and ensure that the user

experience remains consistent even under varying network conditions. By combining lightweight

communication protocols with low-level hardware control, the backend provides a reliable, secure, and

efficient platform for managing smart home operations.

import RPi.GPIO as GPIO

import paho.mqtt.client as mqtt

GPIO setup

RELAY_PIN = 26 # GPIO26, adjust based on your wiring

GPIO.setmode(GPIO.BCM)

GPIO.setup(RELAY_PIN, GPIO.OUT)

GPIO.output(RELAY_PIN, GPIO.LOW) # Default to OFF

MQTT setup

BROKER = "192.168.1.100" # Replace with your Pi's IP address if acting as broker

TOPIC = "pi/topic"

def on_connect(client, userdata, flags, rc):

print("✅ Connected to MQTT Broker with result code " + str(rc))

client.subscribe(TOPIC)

def on_message(client, userdata, msg):

payload = msg.payload.decode()

print(f"📩 Received message: {payload}")

if payload == "LightOn":

GPIO.output(RELAY_PIN, GPIO.HIGH)

print("💡 Light turned ON")

elif payload == "LightOff":

GPIO.output(RELAY_PIN, GPIO.LOW)

print("💡 Light turned OFF")

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect(BROKER, 1883, 60)

try:

print("🚀 MQTT Client Running... Press CTRL+C to exit")

client.loop_forever()

except KeyboardInterrupt:

print("\n🛑 Exiting and cleaning up...")

finally:

GPIO.cleanup()

FreeText
49

CHAPTER VII

CONCLUSION AND FUTURE ENHANCEMENTS

7.1 CONCLUSION

In conclusion, this project stands as a comprehensive demonstration of how IoT technologies can be

effectively harnessed to transform conventional living spaces into intelligent, automated environments

that respond to user needs in real-time. Through the seamless integration of open-source tools such as

Flutter, MQTT, and the Raspberry Pi, the Smart Home Automation System offers an efficient,

affordable, and scalable solution for remote control of household lighting. The mobile application,

developed using Flutter, provides a visually appealing, responsive, and easy-to-navigate interface,

allowing users to interact with the system through traditional UI elements and voice commands. This

approach ensures inclusivity and accessibility for users across varying levels of technical expertise. The

system’s core communication relies on the MQTT protocol—a lightweight, fast, and secure messaging

standard that facilitates real-time interaction between the app and the backend running on the Raspberry

Pi. The Python scripts operating on the Pi are responsible for interpreting commands, triggering the

appropriate GPIO pins, and handling the actual switching of the relay module that controls the physical

light bulb. One of the key strengths of the system lies in its modular and extensible architecture, which

allows for future integration of additional devices such as fans, smart locks, motion sensors, or

temperature monitoring units. The voice integration and biometric authentication further elevate the

project’s real-world applicability, enhancing both convenience and security. The inclusion of

scheduling functionality—albeit within the scope of same-day operations—demonstrates how even

simple automation can bring meaningful energy savings and improve daily routines. Moreover, the

project employs robust software engineering practices, from agile development methodology and

system testing metrics to clean UI/UX design and maintainable code architecture. The project also

acknowledges the growing need for sustainable, energy-conscious living and offers a solution that

reduces unnecessary energy consumption by ensuring appliances are only used when needed, whether

controlled manually or via automation. The backend is built with fault tolerance and responsiveness in

mind, capable of handling connectivity drops and user errors gracefully while providing consistent

feedback to the user. The system not only addresses the key problems identified in traditional home

setups—such as lack of remote access, inefficient manual control, and absence of feedback—but also

FreeText
50

provides a blueprint for implementing similar systems in educational, prototyping, and even

commercial settings. Its reliance on open-source tools significantly reduces the cost barrier, allowing

students, hobbyists, and startups to replicate or build upon the foundation laid here. Overall, the

successful completion of this project reflects a deep understanding of IoT systems, client-server

communication, hardware integration, and user-centric application design. It validates how technology

can be tailored to meet everyday needs without excessive complexity or cost. As IoT continues to grow

and expand into more areas of daily life, systems like this one will pave the way for smarter, more

efficient, and more connected homes. The Smart Home Automation System thus stands not just as a

completed academic project, but as a real-world prototype with the potential for widespread application,

adaptation, and impact in the evolving landscape of digital living.

7.2 FUTURE ENHANCEMENT

Looking ahead, the Smart Home Automation System offers a wide range of opportunities for future

integration and enhancement that would significantly expand its functionality, intelligence, and real-

world value. One of the most promising additions involves incorporating motion and ambient light

sensors, which would allow the system to automatically turn lights on or off based on room occupancy

or natural lighting conditions. This sensor-based automation would not only improve user convenience

but also maximize energy efficiency by ensuring lights are used only when necessary. Another key area

of development involves scaling the system to support multiple devices and appliances, such as fans,

smart plugs, security cameras, and smart locks, all controlled through the same mobile application and

MQTT infrastructure. This would transform the solution from a single-use lighting controller into a

comprehensive smart home ecosystem. Additionally, integrating cloud-based services would open the

door to remote access from anywhere in the world, along with real-time data logging, user analytics,

and device usage reports. This would give users deeper insights into their energy habits while allowing

for more secure, flexible control through cloud dashboards or companion web apps. Beyond hardware

and connectivity, a powerful direction for future integration lies in the use of Artificial Intelligence (AI)

and machine learning to introduce predictive automation. For example, the system could learn a user’s

daily routines and environmental preferences over time, then proactively adjust lighting or other

devices without explicit input. It could also respond to changing conditions like weather forecasts, time

of day, or even calendar events to intelligently manage home environments. Voice integration could

also be enhanced with natural language processing to handle more complex, conversational commands.

FreeText
51

These improvements would elevate the system from being a reactive tool to becoming a proactive,

context-aware assistant. By continuing to build on its modular architecture and open-source foundation,

this project is well-positioned for scalable evolution into a fully intelligent smart home framework—

capable of delivering advanced automation, greater personalization, and deeper integration with the

evolving Internet of Things ecosystem.

FreeText
52

REFERENCES

1. D.Koutsouris Member “A new method for profile generation in an Internet of Things

environment: An application in ambient assisted living” IEEE Internet of Things Journal,

2. Gomes, T. ; Centro Algoritmi - University of Minho, Portugal ; Pinto, S. ; Gomes, T. ; Tavares,

A.” Towards an FPGA-based edge device for the Internet of Things”Emerging Technologies &

Factory Automation (ETFA).IEEE Transactions on Industrial Electronics 10.1109/TIE.

3. Jeya Padmini, J.; Kashwan, K.R.” Effective power utilization and conservation in smart homes

using IoT," in Computation of Power, Energy Information and Commuincation (ICCPEIC),

2015 International Conference on , vol., no., pp.0195-0199, 22-23 April 2015.

4. Jinsoo Han; Chang-sic Choi; Wan-Ki Park; Ilwoo Lee; Sang-Ha Kim,” Smart home energy

management system including renewable energy based on ZigBee and PLC in 2014 .

5. José G. de Matos, Member, IEEE, Felipe S. F. e Silva, Student Member, IEEE, and Luiz A. de

S. Ribeiro, Member, IEEE “Power Control in AC Isolated Microgrids with Renewable Energy

Sources and Energy Storage Systems”

6. Mohanty, S.; Panda, B.N.; Pattnaik B.S., "Implementation of a Web of Things based Smart Grid

to remotely monitor and control Renewable Energy Sources," in Electrical, Electronics and

Computer Science (SCEECS),2014 IEEE Student Conference on vol no pp,1-5,1-2

7. Shiu Kumar “Ubiquitou Smart Home System Using Android Application” International Journal

of Computer Networks & Communications (IJCNC) Vol.6, No.1, January

8. W.Huiyong, W. Jingyang, and H. Min, “Building a smart home system with WSN and service

robot,” in Proc. 5th Int. Conf. Measuring Technol. Mechatronics Autom., Hong Kong, China.

9. "A Review on IoT Enabled Smart Systems for Energy Consumption Monitoring" by A. Sharma,

A. Kumar, and A. Kumar - Journal of Electrical Engineering Education, 2020. 16.

10. "The Role of IoT in Modernizing Electric Utilities" by L. B. Lopes - IEEE Power and Energy

Magazine, 2017. 17.

11. "Security Challenges in IoT-Based Smart Metering Systems" by S. Sultana, M. A. Al-Ali, and

M. Othman - IEEE Access, 2020.

FreeText
53

